
 

CANDIDATE: 148508 !1

Candidate Number: 	 148508
Module Name: 	 	 Sound for Interactive Media	
Module Code:	 	 W3085	

Academic Year:	 	 Spring 2018

BandAR: A live mixing and real-time effects
augmented reality app.

Abstract

This paper explores the creation and development of BandAR, an augmented reality based
app that incorporates distance based live mixing and real-time effects processing. This was my
first project fully in Unity3D/C#, and so this paper is an exploration of my thought processes
throughout the project, including the creation of C# scripts and creative coding to solve
problems with computational thinking.

Keywords:

iOS, Unity3D, XCode, C#, augmented reality, real-time effects, live-mixing

Keywords:

AR: Augmented Reality

VR: Virtual Reality

Acknowledgements:

Chris Kiefer: for inspiring much of my work over the last three years during this undergraduate degree and
for offering me many opportunities to explore my own creative musical ideas.

Thor Magnusson: for doing much the same and also inspiring me with his teaching of computational
thinking and humorous live coding.

The Team at BeFries, Brighton: for putting up with my use of their printer for the last six weeks
printing numerous QR codes for this project and being a great support throughout my degree.  

CANDIDATE: 148508 !2

Abstract	 2
Introduction	 4
Research / Context	 4
Development	 5

The Image Recognition API	 5
The Audio Pt.1	 7
The Interface and Scripts	 8
The Audio Pt.2	 9

Conclusion	 10
Supplementary Information	 10

Bibliography	 10

CANDIDATE: 148508 !3

Introduction

This report aims to investigate BandAR, the app I have created for this creative music project.
My motivation for this project is partly trying to get the most out of my smartphone and new
technology such as augmented reality and image recognition, but also the apparent lack of
engaging and intuitive augmented reality apps on the App Store. BandAR at its core is an
exploration into the collaboration between music and augmented reality. The user is
presented with a camera view, that they can point at up to 6 printed QR codes. The image
recognition service paired with my Unity project replaces these QR codes with 3D models of
6 different instruments on separate stages. The user can move their device closer to the
instruments resulting in a louder volume, and click on the instrument to change some effects
parameters for a reverb, echo, chorus, and a high-pass filter.

Research / Context
Augmented reality and virtuality reality have become known for their explosive entry into the
industry of mobile applications, and more recently video gaming with the advent of
technologies such as the Oculus Rift, HTC Vive and cheaper systems such as Google
Cardboard and PlayStation VR. However, outside of gaming, there hasn’t been too much
activity after the novelty of it wore off for users. On mobile devices, the supply of augmented
reality applications is limited by the very low demand for them. The only truly useful
application I have come across is the IKEA AR app that uses the new ARKit depth camera
code to 3D map your room for furniture measuring. The general consensus seems to be that
VR/AR is “cool” but there isn't much about it that is truly ‘game-changing’ at this current
moment in time outside of gaming (Busel, 2017). This got me thinking about possible musical
uses of AR, perhaps without the snazzy new depth perception cameras in the iPhone 8+/X,
but still using digital camera overlays and aural stimulation. My idea for this project is mainly
to explore the crossroads of 3D art/music and augmented reality. I have done this by creating
a mobile application, and by adding to the increasing amount of research and development in
the field of art-based augmented reality applications and installations such as Circa69’s
“Whilst the Rest Were Sleeping”. Circa69’s installation combines 17 VR experiences and an
AR smartphone app and trail as well as live electronic music, audio-visual performances,
video installations (Circa69, 2017)

CANDIDATE: 148508 !4

Development

The development of this project spans three months, from February to May and can be split
into into four stages:

	 The Image Recognition API	 	 	 The Interface

	 The Audio	 	 	 	 	 	 The Scripts

Unintentionally, this ended up being a very efficient workflow method for this project. The
four sections/stages of the app interacted with each other in a simple enough way that
allowed problem solving to be relatively straightforward and modular even when the project
was inactive for weeks at a time due to time constraints on another project I had on
simultaneously.

The Image Recognition API
The first stage of development was researching into image recognition and augmented reality
APIs. I found out very quickly that Vuforia is the most used image recognition API with
Unity3D implementation. First, I created 6 QR codes, and registered them as image targets
on my Vuforia account (Figure 1). Then I imported the Vuforia API into my Unity3D project,
and set up an ARCamera, which is what the device’s camera sees through (Figure 2).

CANDIDATE: 148508 !5

Figure 1: Vuforia Developers Portal

Then I essentially “logged in” to my Vuforia account in Unity by assigning a unique private
API key to the ARCamera GameObject. The next step was creating the image targets in the
editor window and assigning them the images that I had uploaded onto the dev portal
(Figures 3, 4).

The next step was creating the ‘stages’ for
the instruments. I used imported 3D assets
from the asset store and from some online
asset libraries to create six fun looking stages
for the six different instruments, Guitar,
Bass, Piano, Drums, Vocals, and Backing
Vocals. These are each children of their own
respective QR targets in the hierarchy
window and trigger whenever the QR code
is recognised by the ‘Default Trackable
Event Handler’ script. I finished this stage of

CANDIDATE: 148508 !6

Figure 2: ARCamera

Figure 4: ARCamera and ImageTargets

Figure 3: ImageTarget Properties

Figure 5: Six instrument stages

the development by early March.

The Audio Pt.1

After the image recognition was working in the patch
without fault (Figure 6), the next task was to
implement audio playback. There was a very simple
method to achieve this, and that was adding an
AudioSource to each instrument’s GameObject in the
inspector window and modifying the previously
mentioned DefaultTrackableEventHandler.cs script.
This script by Vuforia deals with the recognition of
targets and has a method that triggers whenever a
target is recognised and then ceases being recognised.
A simple injection of a few lines of code meant that I
could trigger each instruments AudioSource when it
was recognised by the app, this is shown in Figure 7.
What was initially an experiment became a core part
of the app when I enabled 3D sound settings on the
AudioSources. After setting a minimum and

maximum distance from the
imageTargets, what happened was
a unique live mixing experiments
in one of my app tests. I could
move the phone closer to certain
instruments and their volume
would slowly ramp up in volume.
I find this ‘feature’ extremely
intuitive and allows the user to be
truly creative with the placement
of the QR codes in order to
achieve the live mixed sound that
they want.

There is more to the audio side of the development of this project, but it came later in the
chronology, so I will revisit it later in this report. This short audio section was complete in mid
March.

CANDIDATE: 148508 !7

Figure 6: Working Image Recognition

Figure 7: AudioSource code

The Interface and Scripts

After a short break on BandAR of approximately 4 weeks due to another project, I came
back to the project with fresh eyes and managed to achieve the interface and scripts section of
the project development in about a week. I wanted the app to have a sleek appearance, not
too dissimilar to Logic Pro X’s dark grey colour palette, and with a simple UI toggle button
that allowed full camera view. This section on interface is very closely intertwined with the
scripts section of the development, so in the interest of flow, I have joined them together.

I found the GUI building experience in Unity3D fairly unintuitive. Being used to software
such as Photoshop and Illustrator for graphic design, the child hierarchy approach to creating
GUI panels seemed clunky in Unity, and the addition of proportionality anchors that could
not be snapped to the RectTransform functions of GameObjects without a third party script I
had to install, meant that I spent nearly 2 hours just getting the layout I wanted. Essentially
the GUI is made of three sections, the Hide UI Button, the Selected Instrument panel, and
the FX panel, of which there are 6 (one for each instrument).

CANDIDATE: 148508 !8

Figure 7: Full GUI in view

The Hide UI button in the top left
hand corner has a script attached that
deactivates UI panels ‘onclick’ using
the hideGUI.cs script I have written.
On initiation of the app, the FX panels
will not be visible as they are
deactivated by default, but when the
user taps on an instrument, the
correlating FX panel becomes visible
thanks to another script called
onHover.cs. This script makes use

of the Physics.raycast method that detects user input on the screen and contains conditional if
statements that not only change the FX panel but change the text in the Selected Instrument
panel to the correlating instrument. This script is attached to the ARCamera GameObject.

The Audio Pt.2
After the GUI was completed and the sliders
had been created for the FX panels, it was
time to map them to the audio effect filters I
had planned to use: reverb, echo, chorus and
high-pass filtering. I wasn’t sure if there was a
more gracious way to achieve the mappings
than manually dragging GameObjects to each
slider, so thats what I did. With all 42 sliders.
Figure 9 shows the four filters and their
default settings (Wet/Dry slider always at
100% dry default). Figure 10 shows the
mapping set up for the Wet/Dry slider on the
Chorus FX of the guitarTarget. The mapping
was surprisingly simple to set up, which made
a nice change from the GUI-creation.

CANDIDATE: 148508 !9

Figure 8: Script editing

Figure 9: Audio FX Filters Figure 10: Example slider mapping

Conclusion

I started this project wanting to explore the crossroads of 3D art/music and augmented
reality by creating a mobile application that uses QR and image recognition to allow the user
to live-mix music and change FX parameters. While I believe that I have achieved this, and
work colleagues and classmates have congratulated me on my creative and interesting use of
augmented reality, there are still features that I would love to add to BandAR in the future if
it was commercially released. Primarily, I would like there to be a way for the user to add their
own music to the app. Currently, it is just a 4 bar loop of 6 instruments that I quickly made in
a DAW. The reason I have not been able to do this so far is due to my working in Unity3D. If
it was a solely Swift/Xcode based project I am sure I would have learnt enough by now to
add that functionality. However, due to the fact that I am building the app in Unity, and using
the Build/Run feature to make Unity create a custom Xcode project, means that I would
have to be very proficient in Swift coding to implement a file system structure alongside the
imported Unity project. Another feature I would like to see implemented is 3D animations on
each stage, perhaps if the instruments moved when selected, or if the stage changed colour
based on a certain musical parameter. User testing the app proved to be invaluable, after
testing the app with three people, the consensus was that two features needed changing, and
that I hadn’t noticed how unintuitive they were. The first issue was the overall volume level. I
switched the AudioSources to linear volume settings and decreased the overall sphere of each
3D sound source so that the volume ramp was much more apparent. The second change was
increasing the size of the sliders, which made the app a lot easier to use and increased the
enjoyability.

I thoroughly enjoyed the idea of computational thinking and creative coding in this project,
and thinking about C# as a traditional language with syntax and keywords really helped
problem solving in the script-writing of this project.

Supplementary Information

Bibliography

Busel, M. (2017). The 6 biggest challenges facing augmented reality – Haptical. [online] Haptical.
Available at: https://haptic.al/augmented-realitys-biggest-threats-3f4726a3608 [Accessed 9
Apr. 2018].

Circa69. (2017). Circa69. [online] Available at: http://circa69.co.uk/ [Accessed 10 May
2018].

CANDIDATE: 148508 !10

	Abstract
	Introduction
	Research / Context
	Development
	The Image Recognition API
	The Audio Pt.1
	The Interface and Scripts
	The Audio Pt.2
	Conclusion
	Supplementary Information
	Bibliography

